skip to main content


Search for: All records

Creators/Authors contains: "Smith, Doug"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. The ocean carbon store plays a vital role in setting the carbon response to emissions and variability in the carbon cycle. However, due to the ocean's strong regional and temporal variability, sparse carbon observations limit our understanding of historical carbon changes.Ocean temperature and salinity profiles are more widespread and rapidly expanding due to autonomous programmes, and so we explore how temperature and salinity profiles can provide information to reconstruct ocean carbon inventories with ensemble optimal interpolation. Here, ensemble optimal interpolation is used to reconstruct ocean carbon using synthetic Argo temperature and salinity observations, with examples for both the top 100 m and top 2000 m carbon inventories.When considering reconstructions of the top 100 m carbon inventory, coherent relationships between upper-ocean carbon, temperature, salinity, and atmospheric CO2 result in optimal solutions that reflect the controls of undersaturation, solubility, and alkalinity.Out-of-sample reconstructions of the top 100 m show that, in most regions, the trend in ocean carbon and over 60 % of detrended variability can be reconstructed using local temperature and salinity measurements, with only small changes when considering synthetic profiles consistent with irregular Argo sampling.Extending the method to reconstruct the upper 2000 m reveals that model uncertainties at depth limit the reconstruction skill.The impact of these uncertainties on reconstructing the carbon inventory over the upper 2000 m is small, and full reconstructions with historical Argo locations show that the method can reconstruct regional inter-annual and decadal variability.Hence, optimal interpolation based on model relationships combined with hydrographic measurements can provide valuable information about global ocean carbon inventory changes. 
    more » « less
  2. Abstract

    The connections between the overturning of the subpolar North Atlantic and regional density changes are assessed on interannual and decadal timescales using historical, data‐based reconstructions of the overturning over the last 60 years and forward model integrations with buoyancy and wind forcing. The data‐based reconstructions reveal a dominant eastern basin contribution to the subpolar overturning in density space and changes in the overturning reaching ±2.5 Sv, which are both in accord with the Overturning in the Subpolar North Atlantic Program (OSNAP). The zonally integrated geostrophic velocity across the basin is connected to boundary contrasts in Montgomery potential in density space. The overturning for the eastern side of the basin is strongly correlated with density changes in the Irminger and Labrador Seas, while the overturning for the western side is correlated with boundary density changes in the Labrador Sea. These boundary density signals are a consequence of local atmospheric forcing and transport of upstream density changes. In forward model experiments, a localized density increase over the Irminger Sea increases the overturning over both sides of the basin due to dense waters spreading to the Labrador Sea. Conversely, a localized density increase over the Labrador Sea only increases the overturning for the western basin and instead eventually decreases the overturning for the eastern basin. Labrador Sea density provides a useful overturning metric by its direct control of the overturning over the western side and lower latitudes of the subpolar basin.

     
    more » « less
  3. A decades-long affair

    Decadal climate variability and change affects nearly every aspect of our world, including weather, agriculture, ecosystems, and the economy. Predicting its expression is thus of critical importance on multiple fronts. Poweret al. review what is known about tropical Pacific decadal climate variability and change, the degree to which it can be simulated and predicted, and how we might improve our understanding of it. More accurate projections will require longer and more detailed instrumental and paleoclimate records, improved climate models, and better data assimilation methods. —HJS

     
    more » « less
  4. null (Ed.)
  5. Abstract

    Major tropical volcanic eruptions have a large impact on climate, but there have only been three major eruptions during the recent relatively well‐observed period. Models are therefore an important tool to understand and predict the impacts of an eruption. This study uses five state‐of‐the‐art decadal prediction systems that have been initialized with the observed state before volcanic aerosols are introduced. The impact of the volcanic aerosols is found by subtracting the results of a reference experiment where the volcanic aerosols are omitted. We look for the robust impact across models and volcanoes by combining all the experiments, which helps reveal a signal even if it is weak in the models. The models used in this study simulate realistic levels of warming in the stratosphere, but zonal winds are weaker than the observations. As a consequence, models can produce a pattern similar to the North Atlantic Oscillation in the first winter following the eruption, but the response and impact on surface temperatures are weaker than in observations. Reproducing the pattern, but not the amplitude, may be related to a known model error. There are also impacts in the Pacific and Atlantic Oceans. This work contributes toward improving the interpretation of decadal predictions in the case of a future large tropical volcanic eruption.

     
    more » « less